A class of Bayesian shared gamma frailty models with multivariate failure time data.
نویسندگان
چکیده
For multivariate failure time data, we propose a new class of shared gamma frailty models by imposing the Box-Cox transformation on the hazard function, and the product of the baseline hazard and the frailty. This novel class of models allows for a very broad range of shapes and relationships between the hazard and baseline hazard functions. It includes the well-known Cox gamma frailty model and a new additive gamma frailty model as two special cases. Due to the nonnegative hazard constraint, this shared gamma frailty model is computationally challenging in the Bayesian paradigm. The joint priors are constructed through a conditional-marginal specification, in which the conditional distribution is univariate, and it absorbs the nonlinear parameter constraints. The marginal part of the prior specification is free of constraints. The prior distributions allow us to easily compute the full conditionals needed for Gibbs sampling, while incorporating the constraints. This class of shared gamma frailty models is illustrated with a real dataset.
منابع مشابه
Analysis of Tumorigenesis Data Using Shared Gamma Frailty Models via Bayesian Approach
Many analysis in epidemiological and prognostic studies and in studies of event history data require methods that allow for unobserved covariates or “frailties”. We consider the shared frailty model in the frame work of parametric proportional hazard model. There are certain assumptions about the distribution of frailty and baseline distribution. Mostly gamma distribution is considered for frai...
متن کاملBayesian semiparametric frailty selection in multivariate event time data.
Biomedical studies often collect multivariate event time data from multiple clusters (either subjects or groups) within each of which event times for individuals are correlated and the correlation may vary in different classes. In such survival analyses, heterogeneity among clusters for shared and specific classes can be accommodated by incorporating parametric frailty terms into the model. In ...
متن کاملModeling heterogeneity for bivariate survival data by shared gamma frailty regression model
In the analysis of survival data with parametric models, it is well known that the Weibull model is not suitable for modeling survival data where the hazard rate is non-monotonic. For such cases, where hazard rates are bathtub-shaped or unimodal (or hump-shaped), log-logistic, lognormal, Birnbaun-Saunders, and inverse Gaussian models are used for the computational simplicity and popularity amon...
متن کاملMultivariate Frailty Modeling in Joint Analyzing of Recurrent Events with Terminal Event and its Application in Medical Data
Background and Objectives: In many medical situations, people can experience recurrent events with a terminal event. If the terminal event is considered a censor in this type of data, the assumption of independence in the analysis of survival data may be violated. This study was conducted to investigate joint modeling of frequent events and a final event (death) in breast cancer patients using ...
متن کاملGamma frailty transformation models for multivariate survival times.
We propose a class of transformation models for multivariate failure times. The class of transformation models generalize the usual gamma frailty model and yields a marginally linear transformation model for each failure time. Nonparametric maximum likelihood estimation is used for inference. The maximum likelihood estimators for the regression coefficients are shown to be consistent and asympt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biometrics
دوره 61 1 شماره
صفحات -
تاریخ انتشار 2005